Nitric oxide-mediated augmentation of polymorphonuclear free radical generation after hypoxia-reoxygenation.

نویسندگان

  • S Sethi
  • M P Singh
  • M Dikshit
چکیده

Polymorphonuclear leukocytes (PMNLs), nitric oxide (NO), calcium, and free radicals play an important role in hypoxia/ischemia and reoxygenation injury. In the present study, NO donors, sodium nitroprusside (SNP), and diethylamine-NO (DEA-NO) at low concentrations (10 and 100 nmol/L) potentiated, while higher (10 micromol/L to 10 mmol/L) concentrations inhibited free radical generation response in the rat PMNLs. Free radical generation response was found to be significantly augmented when hypoxic PMNLs were reoxygenated (hypoxia-reoxygenation [H-R]). This increase in free radical generation after reoxygenation or SNP (10 nmol/L) was blocked in the absence of extracellular calcium. SNP (10 nmol/L) or H-R-mediated increases in the free radical generation were prevented by the pretreatment of PMNLs with NO scavenger (hemoglobin), the polyadenine diphosphate (ADP)-ribosylation synthase inhibitor (benzamide) or the calcium channel antagonist (felodipine). A significant augmentation in the nitrite and intracellular calcium levels was observed during hypoxia. Hemoglobin pretreatment also blocked the increase in intracellular calcium levels due to SNP (10 nmol/L) or hypoxia. Thus, increased availability of NO during SNP treatment or H-R, may have led to an ADP-ribosylation-mediated increase in intracellular calcium, thereby increasing the free radical generation from the rat PMNLs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia and Reoxygenation Induce Endothelial Nitric Oxide Synthase Uncoupling in Endothelial Cells through Tetrahydrobiopterin Depletion and S-Glutathionylation

Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather tha...

متن کامل

Role of nitric oxide and superoxide balance in hypoxia-reoxygenation proximal tubular injury.

Under normal physiological conditions activation of nitric oxide synthases produces both nitric oxide and superoxide in equimolar concentrations (Figure 1). We propose a hypothesis that in hypoxia-reoxygenation injury this balanced co-production of nitric oxide and superoxide is disturbed and results in pathological effects. Specifically, under hypoxic conditions nitric oxide synthase is activa...

متن کامل

Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation.

This study was designed to investigate the potential role of endogenous peroxynitrite (ONOO-) formation in the inhibition of cardiac muscle contractility and mitochondrial respiration during posthypoxic reoxygenation. Isometric contraction of isolated rat left ventricular posterior papillary muscle was virtually eliminated at the end of an exposure to 15 minutes of hypoxia and remained 40+/-5% ...

متن کامل

Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism

We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. ...

متن کامل

Protective effects of preconditioning in cultured rat endothelial cells: effects on neutrophil adhesion and expression of ICAM-1 after anoxia and reoxygenation.

BACKGROUND Preconditioning with brief periods of ischemia protects the coronary endothelium against acute and chronic reperfusion injury, but the mechanisms of this endothelial protection remain unknown. We hypothesized that preconditioning protects endothelial cells through a decreased production of endothelial adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), leading to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 1999